發布時間:2023-04-10 15:10:26
序言:寫作是分享個人見解和探索未知領域的橋梁,我們為您精選了8篇的人工智能技術論文樣本,期待這些樣本能夠為您提供豐富的參考和啟發,請盡情閱讀。
關鍵詞:人工智能技術;教學方法;編程能力
中圖分類號:TP3 文獻標識碼:A 文章編號:1009-3044(2014)16-3865-02
1 概述
2008年11月16日,中國科協成立50周年新聞會在北京召開。在新聞會上,“五個10”系列評選活動,即10位傳播科技的優秀人物、10部公眾喜愛的科普作品、10個公眾關注的科技問題、10個影響中國的科技事件、10項引領未來的科學技術評選結果揭曉。10項引領未來的科學技術是:基因修飾技術;未來家庭機器人;新型電池;人工智能技術;超高速交通工具;干細胞技術;光電信息技術;可服用診療芯片;感冒疫苗;無線能量傳輸技術。
人工智能技術學科是計算機科學中涉及研究、設計和應用智能機器的一個分支。指人類的各種腦力勞動或智能行為,諸如判斷、推理、證明、判別、感知、理解、通信、設計、思考、規劃、學習和問題求解等思維活動,可以用某種智能化的機器來予以人工實現[1]。
通過《人工智能技術》課程的學習,使學生對人工智能技術的發展概況、基本原理和應用領域有深入了解、對主要技術及應用有一定掌握,并對現代人工智能技術發展的方向有所研究。通過人工智能技術課程的學習與研究,啟發學生對人工智能技術的興趣,培養知識創新和技術創新能力,并能將人工智能技術融入到今后所開發的計算機軟件之中。
《人工智能技術》是一門眾多學科交叉的新興課程,其涵蓋范圍廣,涉及知識點多,知識更新快,內容抽象,不容易理解,理論性強,而且需要較好的數學基礎和較強的邏輯思維能力,這給該課程的講授帶來了一定困難。《人工智能技術》也是一門應用型學科,怎樣將理論運用到實踐中,使學生將學到的人工智能技術知識和思想運用到自己的實際課題,這也是該課程需要解決的問題之一。
因此,對《人工智能技術》課程教學來說,我們要了解課程的最新信息,把握課程的特點,幫助學生找到好的學習方法,使他們能充分發揮自己的創新思維能力,提高學習興趣,該文給出了《人工智能技術》課程的教學與實踐的探索。
2 教學與實踐的探索
2.1 教材和實驗教學內容的選取
1) 人工智能技術是整個計算機科學領域發展最快,知識更新最快,最前沿的學科之一。在教材選用方面,我們采用了蔡自興教授等主編,由高等教育出版社出版的《人工智能基礎》這本教材。蔡自興教授的主要研究領域為人工智能、機器人學和智能控制等。這本教材是作者在美國國家工程院院士、普度大學教授傅京孫先生的指導和鼓勵下編寫,借鑒了國內外人工智能技術研究領域專家的最新研究成果和學術書籍的長處,該書比較全面地介紹了人工智能技術的基礎知識與技術,材料新,易于理解,兼顧基礎及應用[2]。
此外,我們還給學生自主學習提供多種類型的學習資料,其中包括參考書目,如:Russel S, Norvig P.等編著的《Artificial Intelligence: A Modern Approach》一書,人工智能技術國內外期刊,如電子學報,計算機學報,人工智能與模式識別,Artificial Intelligence,Journal of Artificial Intelligence Research,Engineering Applications of Artificial Intelligence和International Joint Conference on Artificial Intelligence,AAAI: American Association for AI National Conference等人工智能技術會議,使學生能夠掌握人工智能技術的更多前沿動態,提高學習興趣。
2) 配套的實驗教學內容。《人工智能技術》是一門理論性和實踐性都很強的課程,實踐性教學環節對該課程尤為重要。除了完成課本上的作業之外,還注重實驗教學,培養學生的創新能力、算法設計能力和編程能力。首先,每個章節設置相應的實驗,而實驗內容經過嚴格的考慮,如:五子棋游戲,產生式系統,旅行商問題,傳教士和野人問題,BP神經網絡實現簡單的分類,遺傳算法、人工生命程序等,要求學生運用所學章節的知識,獨立地設計和實現實驗內容。實驗報告包括簡述實驗原理及方法,給出程序設計流程圖,源程序清單,實驗結果及分析等內容,通過這種方式,進一步加強學生的信息獲取能力和研究能力。
2.2 教學方法和手段的改革
人工智能技術課程交叉性強,涉及面廣,傳統的教學方法手段單一,缺少交流,課堂氣氛沉悶,激發不起學生的學習興趣,教學效果不理想。人工智能技術這門課程內容抽象,如何激發學生的學習興趣是本課程需要解決的主要問題,也是關系教學改革成敗的關鍵。本課程需采用多種方法進行教學,以此來激發學生的學習興趣。
1) 問題啟發式教學。《人工智能技術》這門課程中有很多似是而非、引人入勝的問題,主要是用計算機模擬人類的智能來解決這種問題。在教學中,有目的的提出這些問題,鼓勵學生思考,提出自己的想法和解決方案,并進行分析和比較,這樣強化學生的主動學習意識,提高學習積極性[3]。
2) 個性化學習和因材施教。學生中存在計算機專業和非計算機專業本科畢業的差別,由于他們每個人的基礎不同,有的計算機知識比較匱乏,因此有必要針對每個學生的學習進度,課堂作業和實驗報告情況進行及時評估,對學生提出個性化的教學。例如:在實驗教學中,要求有能力和興趣的學生可以做探究性和創新性的附加實驗,從而引導學生發揮個性的空間,而對稍微吃力的學生則要求完成基本的實驗,更注重基礎知識的學習和夯實,這樣就能達到因材施教的目的。同時對不同層次的學生進行分析,進一步提出學習建議,并進行有針對性的指導。
3) 多媒體使用和多學科知識的融合。本課程PPT課件圖文并茂,提綱挈領,便于學生理解。課堂講授、板書與PPT手段相結合,注重課程中的關鍵詞用英文表示,并適當指定英文參考書,使學生能夠接觸國外文獻資料,加深對學習內容的理解,獲得更寬廣的知識。PPT課件運用了大量多媒體技術,如動畫、聲音、圖像,通過動畫和視頻演示抽象的概念、算法和過程,使人工智能技術中抽象的知識形象化,在課件中融入了文學,歷史等其他學科的相關知識,便于學生較好地理解知識難點和重點[4]。
4) 師生互動和課內外答疑。在教學中,改變了傳統的老師講,學生聽的教學模式。針對人工智能技術的實用性,適當提問,收集學生學習情況,盡量使用實例進行講解。設置了實驗講解互動課程,對于實驗的講解,學生可以提出疑問,然后在課堂上展開討論,學生可以看到問題從提出、分析到解決的整個過程,讓學生自己在討論中總結結論。為了解決教學中存在的疑難問題,還設有課后答疑,使學生能將所有的問題都理解透徹。
5) 理論研究與實踐結合。在教學內容的安排上,注重學生的理論研究和動手能力,適當布置一些課程相關的論文和實驗編程。通過課程論文,可以培養學生鉆研問題的興趣; 通過查閱科技文獻使學生掌握如何查找相關文獻的技能,可以培養學生撰寫科技論文的能力。通過實驗實踐,使學生可以更加清楚地了解人工智能技術基本概念和難點,也能了解算法的設計具體運行過程,并對其進行驗證,提高了學生的編程能力和和學習興趣。
6) 考試考核方式改革。本課程的考核考試也是一個值得探討的問題,本課程應采用多種綜合考試方法,注重學生對基礎概念、知識和基本的技能的掌握以及理論聯系實際的能力。平時作業考核成績,實驗實踐教學成績、提交課程論文成績,以及最后的期末考試成績形成一種有效的考試考核方法,促進學生主動學習,提高教學質量。實驗的評價指標在于算法設計、編程的準確性和實驗結果及分析。課程論文評價指是選題是否嚴謹科學和具可研究性,論文結構、思路是否嚴謹,論文內容科學性、正確性,能否提出自己的見解。考查查閱科技文獻的能力主要通過是否查找到權威的、最新文獻以及撰寫是否規范。
2.3 學生學好《人工智能技術》課程的建議
《人工智能技術》是一門理論與實踐相結合的應用課程,學生如何學習這么課程,也是我們應該探討的問題。
學生應該正確看待《人工智能技術》這門科學的發展。人工智能技術孕育于20世紀30、40年代,形成于60、70年代,發展至今,人工智能技術只有短短60多年的歷史,它是一門不斷發展和完善的嶄新學科,還有許多課題處于探索中,理論和技術還遠未成熟,我們應該對它有科學的認識。
針對非計算機專業本科畢業的學生,除了課堂聽講之外,還應該課下自學該課程的先修課程,如:數據結構、離散數學等課程。人工智能技術中涉及到大量的數學知識,如:模式識別需要具有較好的概率論,數理統計知識,另外還會用到少量隨機過程、模糊數學的一些知識。人工智能技術是一門應用課程,編程語言的掌握必不可少,涉及到SVM算法,粒子群算法,免疫算法神經網絡,遺傳算法等算法,實現這些算法要求學生具有較強的編程能力。
學生應該多讀,多查閱資料,特別是國外的期刊文獻和重要國際會議論文,多了解人工智能技術最前沿的信息,理論聯系實際,加深對基本算法的理解,并將人工智能技術的知識運用到自己所研究的領域,以做到學以致用。
3 結論
人工智能技術在一定程度上代表著信息技術的前沿,該文對《人工智能技術》的課程教學進行了一些探討,教學與實踐效果有了顯著提高,但仍然有許多方面還需要我們繼續探討和改進。
參考文獻:
[1] 蔡自興,徐光佑.人工智能技術及其應用[M].北京: 清華大學出版社,2003.
[2] 蔡自興,肖曉明,蒙祖強,等.樹立精品意識搞好人工智能技術課程建設[J].中國大學教學,2004(1):28-29.
關鍵詞:人工智能計算機技術
一、人工智能的定義
“人工智能”(ArtificialIntelligence)一詞最初是在1956年Dartmouth學會上提出的。人工智能是指研究、開發用于模擬、延伸和擴展人的智能的理論、方法、技術及應用系統的一門新的技術科學。人工智能是計算機科學的一個分支,它企圖了解智能的實質,并生產出一種新的能以人類智能相似的方式做出反應的智能機器。目前能夠用來研究人工智能的主要物質手段以及能夠實現人工智能技術的機器就是計算機,人工智能的發展歷史是和計算機科學與技術的發展史聯系在一起的。人工智能理論進入21世紀,正醞釀著新的突破,人工智能的研究成果將能夠創造出更多更高級的智能“制品”,并使之在越來越多的領域超越人類智能,人工智能將為發展國民經濟和改善人類生活做出更大貢獻。
二、人工智能的應用領域
1.在管理系統中的應用
(1)人工智能應用于企業管理的意義主要不在于提高效率,而是用計算機實現人們非常需要做,但工業工程信息技術是靠人工卻做不了或是很難做到的事情。在《談談人工智能在企業管理中的應用》一文中劉玉然指出把人工智能應用于企業管理中,以數據管理和處理為中心,圍繞企業的核心業務和主導流程建立若干個主題數據庫,而所有的應用系統應該圍繞主題數據庫來建立和運行。換句話說,就是將企業各部門的數據進行統一集成管理,搭建人工智能的應用平臺,使之成為企業管理與決策中的關鍵因子。
(2)智能教學系統(ITS)是人工智能與教育結合的主要形式,也是今后教學系統的發展方向。信息技術的飛速發展以及新的教學系統開發模式的提出和不斷完善,推動人們綜合運用超媒體技術、網絡基礎和人工智能技術區開發新的教學系統,計算機智能教學系統就是其中的典型代表。計算機智能教學系統包含學生模塊、教師模塊,體現了教學系統開發的全部內容,擁有著不可比擬的優勢和極大的吸引力。
2.在工程領域的應用
(1)醫學專家系統是人工智能和專家系統理論和技術在醫學領域的重要應用,具有極大的科研和應用價值,它可以幫助醫生解決復雜的醫學問題,作為醫生診斷、治療的輔助工具。事實上,早在1982年,美國匹茲堡大學的Miller就發表了著名的作為內科醫生咨詢的Internist2Ⅰ內科計算機輔助診斷系統的研究成果,由此,掀起了醫學智能系統開發與應用的。目前,醫學智能系統已通過其在醫學影像方面的重要作用,從而應用于內科、骨科等多個醫學領域中,并在不斷發展完善中。
(2)地質勘探、石油化工等領域是人工智能的主要作用發揮領地。1978年美國斯坦福國際研究所就研發制成礦藏勘探和評價專家系統“PROSPECTOR”,該系統用于勘探評價、區域資源估值和鉆井井位選擇等,是工業領域的首個人工智能專家系統,其發現了一個鉬礦沉積,價值超過1億美元。
3.在技術研究中的應用
(1)在超聲無損檢測(NDT)與無損評價(NDE)領域中,目前主要廣泛采用專家系統方法對超聲損傷(UT)中缺陷的性質、形狀和大小進行判斷和歸類;專家運用超聲無損檢測儀器,以其高精度的運算、控制和邏輯判斷力代替大量人的體力與腦力勞動,減少了任務因素造成的無擦,提高了檢測的可靠性,實現了超聲檢測和評價的自動化、智能化。
(2)人工智能在電子技術領域的應用可謂由來已久。隨著網絡的迅速發展,網絡技術的安全是我們關心的重點,因此我們必須在傳統技術的基礎上進行網絡安全技術的改進和變更,大力發展數據挖掘技術、人工免疫技術等高效的AI技術,開發更高級AI通用和專用語言,和應用環境以及開發專用機器,而與人工智能技術則為我們提供了可能性。
三、人工智能的發展方向
1.專家系統是目前人工智能中最活躍、最有成效的一個研究領域,它是一種具有特定領域內大量知識與經驗的程序系統。近年來,在“專家系統”或“知識工程”的研究中已出現了成功和有效應用人工智能技術的趨勢。人類專家由于具有豐富的知識,所以才能達到優異的解決問題的能力。那么計算機程序如果能體現和應用這些知識,也應該能解決人類專家所解決的問題,而且能幫助人類專家發現推理過程中出現的差錯,現在這一點已被證實。
2.智能信息檢索技術的飛速發展。人工智能在網絡信息檢索中的應用,主要表現在:(1)如何利用計算機軟硬件系統模仿、延伸與擴展人類智能的理論、方法和技術。(2)由于網絡知識信息既包括規律性的知識,如一般原理概念,也包括大量的經驗知識這些知識不可避免地帶有模糊性、隨機性、不可靠性等不確定性因素對其進行推理,需要利用人工智能的研究成果。
3.SOAr是一種通用智能體系結構,其始終處在人工智能研究的前沿,已顯示出強大的問題求解能力,它認為機器人的開發是人工智能應用的重要領域。在它的研究中突出4個概念:(1)所處的境遇機器人不涉及抽象的描述,而是處在直接影響系統的行為的境地。(2)具體化機器人有軀干,有直接來自周圍世界的經驗,他們的感官起作用后會有反饋。(3)智能的來源不僅僅是限于計算裝置,也是由于與周圍進行交互的動態決定。(4)浮現從系統與周圍世界的交互以及有時候系統的部件間的交互浮現出智能。目前,國內外不少學者都對機器人足球系統頗感興趣,足球機器人涉及機器人學、人工智能以及人工生命、智能控制等多個領域。足球機器人系統本身既是一個典型的多智能體系統,是一個多機器人協作自治系統,同時又為它們的理論研究和模型測試提供一個標準的實驗平臺。
參考文獻:
[1]元慧.議當代人工智能的應用領域和發展狀況[J].福建電腦,2008.
[2]劉玉然.談談人工智能在企業管理中的應用[J].價值工程,2003.
[3]焦加麟,徐良賢,戴克昌.人工智能在智能教學系統中的應用[J].計算機仿真,2003,(8).
[4]周明正.人工智能在醫學專家系統中的應用[J].科技信息,2007.
[5]張海燕,劉鎮清.人工智能及其在超聲無損檢測中的應用[J].無損檢測,2001,(8).
[6]馬秀榮,王化宇.簡述人工智能技術在網絡安全管理中的應用[J].呼倫貝爾學院學報,2005,(4).
Jeffrey J.P.Tsai University of Illinois,
Chicago, USA(Eds.)
Machine Learning
Applications in Software
Engineering
Series on Software Engineering and Knowledge Engineering Vol. 16
2005,355Ppp.
ISBN 9789812560940
軟件工程中的
機器學習應用
D張JJP特賽編
本書是《軟件工程與知識工程》叢書的第16卷。Brooks在其經典的論文“無銀彈”中對于在變化的環境中開發和維護大量軟件系統的挑戰已經做出了具有說服力的闡述。復雜性、一致性、可變性和隱形性,這些都是在開發大型軟件中固有的基本困難。
人們提出了許多演化或者遞增改進的辦法,每一種改進辦法都試圖致力于改進這些基本困難的某些方面。人工智能技術對軟件工程的應用產生了某些令人振奮的結果。這些成功的人工智能技術包括了基于知識的方法,自動推理、專家系統、啟發式搜索策略、時態邏輯、規劃及模式識別。為了最終克服這些基本的困難,人工智能技術能夠發揮重要的作用。而作為人工智能的一個子領域,機器學習涉及一個問題,即如何建立一個計算機程序,該程序通過經驗能夠改進它們在執行某些任務時的性能。
機器學習專門致力于創造并且編譯可驗證的知識,而這些知識與人工制品的設計與構建相關。機器學習領域包括了監督學習、無監督學習和增強學習,它已經被證明在許多的應用領域中具有極大的實用價值。軟件工程領域已成為一塊沃土,在那里許多軟件開發和維護的任務可以系統地闡述為學習問題和依據學習算法的方法。本書涉及了在軟件工程中的機器應用這個主題,它提供了對機器學習的綜述,總結了這個領域中的最新實踐,給出了對現有工作的分類,提供了某些應用準則。書中還包括了在該研究領域中先前發表的論文集合。
本書由9章組成。第1章機器學習與軟件工程介紹;第2章預測和估計中的機器學習應用;第3章屬性與模型發現中的機器學習應用;第4章變換中的機器學習應用;第5章生成與合成中的機器學習應用;第6章重復使用中的機器學習應用;第7章需求獲取中的機器學習應用;第8章開發知識管理中的機器學習應用;第9章準則與結論。
本書可供軟件工程以及機器學習專業的研究人員和研究生閱讀參考。也可供從事軟件開發工作的人員閱讀。
胡光華,高級軟件工程師
(原中國科學院物理學研究所)
AI Index在新舊年份交替之際公布了團隊成立以來第一份報告,其中具有代表性的八張圖可以幫助我們快速、全面了解AI這一行業高速發展的啟發和見解。
1、AI學術研究論文激增9倍以上
自1996年以來,每年發表的計算機科學的學術論文和研究的數量猛增了9倍以上。學術論文和研究通常能產生新的知識產權和專利。整個Scopus數據庫中,含有“Artificial Intelligence”這個關鍵詞的計算機科學領域的論文有超過200,000(200237)篇。Scopus數據庫中“計算機科學”領域的論文總共有近500萬(4868421)篇。
2、AI風險投資激增6倍
自2000年以來,在美國,風險投資者(VC)每年投入AI創業公司的投資額增加了6倍。Crunchbase,VentureSource和Sand Hill Econometrics被用于確定VC每年投給初創公司的資金額,這些初創公司在某些關鍵領域起著重要作用。上圖顯示了VC在美國所有融資階段對AI創業公司年度投資總額。
3、AI創業公司激增14倍
自2000年以來,在美國,有資本支持的AI創業公司數量增加了14倍。Crunchbase,VentureSource和Sand Hill Econometrics也用于這一分析。這個數字包括VentureSource數據庫中Crunchbase列表中的任何有VC支持的公司。
4、要求AI技能崗位激增4.5倍
自2013年以來,要求有AI技能的工作崗位增長了4.5倍。在Indeed.com平臺上,需要AI技能的工作崗位所占份額的計算方法是通過職業描述中的標題和關鍵字來確定是否與人工智能相關。AI Index研究還計算了在Indeed.com平臺上,要求人工智能技術的工作崗位份額在不同國家的增長情況。盡管加拿大和英國增長迅速,但對于人才招聘市場,Indeed.com的報告顯示加拿大和英國分別只占美國AI招聘市場絕對規模的5%和27%。
5、機器學習、深度學習以及NLP成為核心技能
在線求職平臺Monster.com上數據顯示,機器學習,深度學習和自然語言處理(NLP)是最重要的三項技能。兩年前NLP已經被預測會成為應用程序開發人員創建新的AI應用程序最需要的技能。除了創建AI應用程序,最受歡迎的技能還包括機器學習技術,Python,Java,C++,開源開發環境的經驗,Spark,MATLAB和Hadoop。根據對Monster.com的分析,在美國,數據科學家,高級數據科學家,人工智能顧問和機器學習主管的薪水中位數為$127000。
6、圖像標注錯誤率巨幅下滑至2.5%以下
自2010年以來,圖像標注的錯誤率從28.5%下降到2.5%以下。大規模視覺識別挑戰賽(LSVRC)的對象檢測任務的AI拐點發生在2014年。在這項特定任務中,AI已經表現得比人類更準確。這些發現來自于ImageNet網站上LSVRC競賽排行榜的競賽數據。
7、機器人進口量激增至25萬
從國際上看,機器人的進口量已經從2000年的10萬臺左右增長到了2015年的25萬臺左右。數據來源是每年進口到北美以及國際整體的工業機器人的數量。工業機器人由ISO 8373:2012標準定義。國際數據公司(IDC)預測對機器人的消費將在五年內加快,到2021年達到2307億美元,復合年增長率(CAGR)為22.8%。
關鍵詞:大學計算機基礎;教學改革;人工智能;智慧課堂
云計算、大數據、人工智能新興領域的崛起,推動信息技術全面滲透于人們的生產生活中。信息技術的核心在于計算機技術和通信技術。然而,雖然目前各個高校都開設了計算機基礎課程,但是其教學卻存在著諸多問題,導致該課程無法達到預期的教學效果。教育部在2012年《教育信息化十年發展規劃(2011-2020年)》,其中指明“以教育信息化帶動教育現代化,促進教育的創新與變革”[2]。因此,本文以華中師范大學計算機基礎課程教學為例,深入闡述了傳統計算機基礎課程教學的弊端,提出了在當前人工智能如火如荼的時代背景下,如何應用人工智能相關技術對傳統的計算機基礎教學進行改革的具體方案。該方案以創建網絡智慧課堂教學模式改革為主體,輔以教學觀念、知識體系和課程考核方式改革,以期對高校的計算機基礎課程教學有所裨益。
1傳統教學的缺陷
⑴課程的教學地位沒有引起足夠的重視一些高校為計算機基礎課程分配較少的學時(少于48學時),甚至有的專業將此課程設置為選修課。這種設置降低了該課程在教師和學生心目中的位置,導致了對該課程的忽視。同時,不少老師因為學時不夠,時間緊迫,僅僅講述與考試相關的內容,不考的一概不講。這導致學生的眼界受限,知識和能力受限,無法培養其全面綜合的計算機素質。還有的專業沒有將這門課給專業的計算機學院的老師講授,而是隨意安排授課人員。沒有經過系統專業訓練的教師缺乏足夠的知識儲備,很難講好這一門看似簡單的課程。⑵課程教學內容的制定與當今時代對于信息化人才的需求脫節一些高校的現狀是計算機基礎的課程教材知識陳舊[3]、質量堪憂,教材總是無法跟上知識更新的步伐,例如都2019年了還在講Office2010。有的高校由于缺乏對課程的重視,沒有對教材優中選優,而是基于利益的考慮,優先選擇自己院系編寫的教材。其教材內容是七拼八湊,沒有整體性、邏輯性和連貫性,更不用說前瞻性。這樣的教材,無疑對學生的學習設置了巨大的屏障。除此以外,一些院校的課程教學知識體系不夠明確和完善,教學大綱的制定不夠科學。從教學大綱中制定的學時分配來說,常常偏重實用性[4],常用計算機軟件操作占據了大部分的課時。這會讓教師在授課時輕理論而重操作,如此培養學生,非常不利于其計算思維的形成,對后續其他計算機相關課程的學習也是很大的傷害。⑶教學模式過于傳統,信息化水平較低從教學方式上來說,傳統的教學模式以教師課堂授課為中心,是以教師為主體的教學模式[5]。在這種模式下,教師仍然主要以填鴨式教學為主[6],無法通過課堂教學發現學生的個性化特點,并進行有針對性的教學。另外,雖然計算機基礎課程一般都配備了實驗課時,但是實驗課常常是采用教師布置上機任務、學生做完抽樣檢查的模式。這對于大課堂來說,教師的任務繁重,無法搜集到每一個學生的任務完成情況,無法清晰地掌握學生學習的實際情況和薄弱環節。而且,該課程缺乏相應的研討課時,很難讓學生對其所學知識進行深入思考和探究,以增強思辨能力和對課程的學習興趣。⑷課程考核方式不夠公平合理從考核方式上來說,該課程普遍采用“平時成績”+“期末考試”的加權方式對學生成績進行評定。平時成績多由考勤分所得,期末考試多采用機考模式。這種考核方式過于單一化、機械化,無法對學生進行全方位的評價。很多學生來到教室打考勤,但可能根本沒聽講,而是在睡覺或者玩手機。期末機考的公平合理性也是存在著很多的漏洞。例如機考的試題庫可以十年不變,分值的分配和難度的掌握都沒有經過系統的考量。甚至有的考試系統不夠穩定和安全,頻頻爆出Bug,嚴重影響了考試結果的真實性。
2新人工智能環境下對計算機基礎課程改革的具體方案
2012年開始,在隨著卷積神經網絡技術在視覺處理方面的應用取得巨大的成功之后,人工智能到達了有史以來的第三個爆發期。目前,深度學習技術在AlphaGo、無人駕駛汽車、機器翻譯、智能助理、機器人、推薦系統等領域的發展如火如荼。與此同時,人工智能技術在教育領域方面的應用已經興起。人工智能的教學產品也已有先例,例如基于MOOC平臺研發的教學機器人MOOCBuddy等等。基于人工智能的教育是融合云計算、物聯網、大數據、VR、區塊鏈等新興技術的增強型數字教育[2].在當前人工智能的大時代背景下,針對傳統計算機基礎的種種弊端,我們提出了如下教學改革方案。⑴改變教學理念,確立計算機基礎課程的重要地位計算機基礎作為高校的一門公共課,實則應當作為各個專業的學生后續的學習、科研的必修之課程。因此,高等學校應從源頭上確立該課程的重要地位,將該課程納入必修課范疇,并給與更充分合理的課時分配。除教學課時、實驗課時之外,需要為該課程增加一定的研討課時。任課老師必須是來自于計算機專業的人才。同時,定時舉辦關于該課程的教學培訓、教學研討會和教學比賽,改變教師的教學理念,從源頭上給予該課程足夠的重視。⑵優化教學內容,重新制定課程的教學知識體系教材是教師教學的主要依據,也是學生獲得系統性知識的主要來源。因此,教材對于教學的重要性不言而喻。教材的選取需要優中擇優,必要的時候可以根據自身院校的情況自己編寫,力求使用好的教材使教學事半功倍。在選定優質教材的基礎上,制定更加合理的教學大綱,優化計算機基礎課程的教學知識體系,突出計算機學科入門相關基礎理論知識的重要地位。對現有的過時內容進行更新,例如操作系統以Windows10的操作取代Windows7,Office這部分使用Office2019版本取代2010的版本,同時增加關于算法入門知識、程序設計入門知識以及人工智能、區塊鏈等前沿知識單元的介紹。以華中師范大學為例,我們在圖1中給出了該校計算機基礎課程的教學知識體系結構圖。⑶充分利用現代化的教學工具和人工智能技術,構建智慧課堂,改變傳統教學模式現代化的教學應當轉變以教師為核心的教學模式,更加突出學生的主體性地位。因此,在人工智能、物聯網、大數據等技術和蓬勃發展的情形下,應當改變傳統的課堂教學形式,充分利用現代化信息技術,將傳統課堂教學和網絡課堂教學模式相結合,構建智慧課堂。融合課堂教學身臨其境的效果與網絡課堂自主性強且方便師生交流的特點,通過師生之間多層次、立體化的互動,達到提升教學效果的目的。同時,建立功能強大、完善的學生實驗平臺,基于不同專業學生的不同特點和不同需求,進行個性化的作業設置。針對教師布置的實驗任務和學生的完成情況,結合在線網絡教學系統,通過傳感器及網絡數據,搜集學生的學習行為數據,并且使用人工智能算法進行智能分析,使教師對當前的學生的學習情況一目了然,并能引導學生對重點、難點的鞏固和掌握。研討課以學生為主體,按照所選課題進行分組調研、分組討論,刺激學生的學習興趣,培養其思辨能力。研討內容最終可以課程論文的形式上交至課程共享平臺,由教師和同學共同給出評分。這里,仍以華中師范大學為例,我們將在線教學系統、實驗課平臺、研討課共享平臺等集成為一個基于人工智能技術的網絡智慧教學綜合平臺系統。該系統主要包括用戶管理、在線教學、課堂互動、作業管理、考試管理、BBS系統、智能分析和平臺管理8個模塊,其主要功能如圖2所示。該系統采用C/S模式,系統的服務器選用Linux服務器,同時開發基于PC機的和手機端的客戶端系統,方便學生和教師隨時選用、更加靈活。在線教學模塊中的智能學習助理功能,能夠根據歷史用戶的學習行為和當前用戶的學習行為,自動地識別學習內容中的難點以及當前學生的難點內容,有針對性地對學生進行知識點強化。課堂互動模塊中,通過可穿戴式傳感器搜集學生的學習行為,用于后續智能分析模塊中對學生的學習態度和學習行為進行智能分析。在線作業評價模塊包括機器評價和教師評價兩個功能。機器評價是系統為學生作業(客觀題、主觀題)自動評分,其中主觀題的評分也是使用人工智能技術來實現。教師評分時可以參考機器評分,減少教師工作量。同時,教師評分為機器評分提供機器學習的經驗數據,促進機器評分更加智能。智能分析模塊能夠依據學生的在線課程學習模塊、課堂學習模塊、作業管理模塊等搜集到的學習行為數據進行綜合分析,促使教師深入了解學生的學習情況和個性化特點,提升教學的針對性,并且有助于后續對學生進行全面、綜合的分析和成績評定。所有系統模塊中使用到的智能分析技術包括基本的統計分析、以及各類機器學習算法(k-means,NaveBayes,SupportVectorMachine,DeepLearning等等)。⑷改變傳統成績考核的方式在“教學”+“實驗”+“研討課”課程結構以及網絡智慧教學綜合平臺的輔助之下,學生的成績評定更加全面化、多元化、公平化、自動化[7]。平時成績中,除了教學綜合平臺的“課堂簽到”次數之外,還增加更多豐富多元化的考察信息,如:學生的課堂討論、在線課程學習和考核結果、平時作業完成情況,以及智能分析模塊中輔助分析的學習態度、學習能力、平時成績預測。期末上機考試系統也是智慧課堂綜合平臺的一個子模塊,是精心設計的穩定、安全、功能強大的子系統,方便教師每一年更新試題庫,修改bug。試題庫中的每一套試卷都應當經過科學的考卷質量分析,使其難度、覆蓋范圍在一個均衡、合理的范圍。最后,教師通過對各類平時成績指標以及期末考試成績加權,給出最終的學習成績。通過規范、合理、公平、全面的考核體系,獲得對學生公平、完善的評價機制,激勵學生并刺激教學良性運轉。
3結束語
【關鍵詞】安檢系統 智能X光機 圖像處理 圖像識別 人工智能 GPU云計算 大數據
1 引言
安檢作業是鐵路運輸安全至關重要的一步,X光安檢機是該環節中的關鍵設備,但是長期以來,都是人工看圖識別,員工上崗前要經過相對長時間的培訓,同時人工作業會在疲勞的時候產生誤檢和漏檢。隨著GPU云計算的高速發展,計算機的計算力成本迅速降低,為以計算力和大數據為基礎的人工智能技術提供了突破閾值的基礎。通過軟、硬件及線上線下結合,匯集與分析各種安檢領域(包括海關、機場等)的圖像與數據,將之應用于高鐵站安檢作業作為底層初始數據,再在運行過程中使用人工智能的深度學習算法,可以有效提高人工智能X光安檢機(簡稱,智能X光機)禁限帶物品的識別率、降低勞動強度、減少人為誤差;同時匯聚大量單一作業點數字化的安全信息到公共安全大數據中樞平臺,反饋回的大數據喂養人工智能算法,機器學習后的結果再次應用到具體某一單作業點時,便整體提高所有單一作業點的識別率(圖1)。
由于乘客所攜帶物品種類相當復雜,智能X光機的智能識別系統如何快速、準確的識別出乘客所攜帶的禁限帶物品面臨著巨大的挑戰。本文使用基于圖像處理、圖像識別以及機器深度自主學習的計算機算法,在X光機圖像智能識別方面進行了深入開發和實地試驗。智能X光機的模式智能識別系統是智能X光機的重要組成部分。為智能X光機的閘門提供控制信號以及各種報警信號。最后,根據以上的試驗結果,研發實用的智能X光機的模式識別系統。本文主要介紹了該圖像處理與識別的過程以及智能識別系統。從而解決一下三個方面的主要問題:
(1)解決一線安檢人員不足、過度勞累的問題,以及因此而產生的誤檢和漏檢等問題;消除和減少安全隱患,同時實現減員增效;
(2)降低對于人員素質要求,縮短上崗前的培訓周期,直接勝任物品安檢崗位;
(3)解決傳統安檢無法聯網、無法數據積累、海量數據資源浪費的問題。
2 圖像異物檢測原理
2.1 圖像識別方法
本論文設計的基于圖像理的高鐵站智能X光機檢測過程主要包括六個部分,分別是:圖像采集、新拍圖片和原始圖片特征點提取、新拍圖片和原始圖片特征點匹配、求得新拍圖片和原始圖片之間的空間變換矩陣、對新拍圖片進行透視變換、對變換后圖片與原始圖片進行相減。
計算機視覺的相關應用中經常會提到一個概念:特征點。特征點也稱作關鍵點或者興趣點,顧名思義,圖像中的特征點一般指一些獨立的物點,例如:煙肉、避雷針、旗桿、電視塔等等;或者圖像中的一些線型要素的交叉點或者面狀要素邊界線拐點。如:桌子角、墻角、樹枝交叉點等等。特征點的概念常常被用來解決一些生活中的實際應用問題,例如:圖像的配準、物體的識別、圖像的三維重建等等。假如我們可以檢測到充足的此類特殊的特征點,由于它們的區分度比較高,就沒有必要觀察整幅圖像,只對這些特征點進行局部的分析,并且利用它們精確的定位圖像的某些穩定的特征。
2.2 比對流程
通過兩幅圖像之間的匹配點對,求解出它們之間對應的單應矩陣,然后可以通過該單應矩陣對新拍圖像進行變換,能夠得到與原始圖像配準程度很高的圖像。
要檢測新拍圖像上的異物,我們需要對經過變換過后的新拍圖像和原始圖像進行配準操作,變換過后的新拍圖像由于透視變換出現一部分黑色區域,這樣會對后續的圖像對比操作造成很大的影響,因此,我們首先需要一定的手段將該黑色區域去掉,在計算機視覺處理技術當中有一種圖像剪切技術可以達到此目的,需要注意的是,為了能夠對兩幅圖像的相同區域進行對比,我們需要對原始圖像進行同樣尺寸的剪切動作。
經過剪切過后的兩幅圖像尺寸大小一致,此時可以用圖像像素值差法對該兩幅處理后的圖像進行圖像相減,我們可以事先預設一個閾值,如果相同位置的像素點的值相同或者兩像素點差值未超過預設的閾值,則可以認定此兩像素點是相同的,反映在結果上則是該位置為一個黑色點斑,反之,若相同位置像素點的像素差值超過預設的閾值,則該位置顯示一個白色點斑。我們可以通過圖像相減的結果圖像上的白色斑點直觀的判斷兩圖像之間的差異或者是否存在異物。
3 測試試驗
長春西高鐵站對使用的人工智能X光安檢設備,進行了改造,融入了圖像處理技術和人工智能云端計算力應用的檢測,并進行試驗和實物操作檢驗。
(1)設計了一套基于圖像處理技術的高鐵站智能檢測軟件系統。整個圖像處理過程分為新拍圖像與原始圖像特征點檢測及匹配、對檢測出的新拍圖像與原始圖像特征點對精選、新拍圖像與原始圖像之間空間轉換矩陣的估計、新拍圖片的透視變換、圖像剪裁、新拍圖像與原始圖像相減、圖像異物標記、腐蝕除去噪聲等8個步驟,針對上述8個步驟編寫了相應算法。
(2)在實際的圖像攝取過程當中,拍攝視角無法保證每一次都完全相同,尤其是當拍攝環境較為復雜時,由于物體的遮擋效應,攝像頭在比較大視角變化情況下拍攝出的圖像相較于原始圖像會出現很多“新”的內容,這樣在圖像相減時可能會出現很大的差異,可以考慮在一個角度變化范圍內實現很多張微小角度變化的圖片的拍攝,然后連續對相鄰的圖片進行空間轉換,最終達到效果比較好的大角度空間轉換。
(3)由于實際的拍攝角度和環境亮暗的不同,物體表面反射光強度不可避免會存在差異,由此,在兩圖像像素值差算法的過程中,也可能會出現噪聲,為消除噪聲,本設計的系統用的是圖像腐燭算法,使系統異物檢測效果更好。實驗測試表明,在環境的亮暗、圖像位移、旋轉、傾斜、縮放等因子的變化不超過容許范圍的條件下,本次試驗提及的基于圖像處理的高鐵站智能檢測系統基本能夠取得較好的效果。
(4)根據不同的應用場景,靈活配置安檢效率和閱圖效率的匹配關系:
快速安檢模式:安檢效率高于閱圖效率,增加安檢人數以滿足業務量的需求,適用于業務高峰期,快件量巨大的應用場景;
快速閱圖模式:安檢效率小于閱圖效率,平均每位閱圖人員可管理多個通道;適用于業務低谷期、安檢包裹較少的情況,以節約人力成本。以上兩種測試也很成功。
(5)長春西高鐵站的人工智能X光安檢機測試結果想到優異。已經具備200-1000億次/秒的圖形運算能,自動識別肉眼難以辨認的復雜背景后的槍支,經過大數據分析,甚至能查驗出分批寄運的槍支零件,可對3D打印槍進行識別(圖2)而傳統X光機無能為力。該大數據的云平臺系統,運算速度已經達到毫秒速度。當前版本的智能X光機,可識別常見的一百種以上刀具、數十種30種以上槍支、常見的上百種瓶裝液體、一百種以上的鋰電池(圖2)。
4 展望及結束語
未來下一步的工作是進行各個單一作業點的人工智能X光安檢機聯網,實現數據的實時向大數據運營中心傳送;在運營中心GPU計算力的使用和機器深度學習的迭代升級,會持續不斷地增強實現智能判斷力、并通過智能語音播報提醒。每個車站都配備一個分指揮中心,可以完全實現培訓、指揮的功能。可以實現24小時值機和支持一人值雙機的工作的方案,并能實現遠程值機、移動值機等功能。極大地提高了火車站X光機安檢環節的工作效率和升級了安全保障的能力,并實現減員增效。
本文報道了人工智能X光機的安檢系統在長春西高鐵站的實地應用和測試原理、方案、過程和結果,討論了智能X光機通過運用圖像處理和圖像識別技術,結合與人工智能機器深度學習的算法,和GPU云計算的大數據處理能力,經過反復實測試驗,初步實現了高鐵站安檢作業異物檢測功能的需求,但仍存在很多實際應用問題需要改進和完善,仍然需要大量的基礎數據建立數據庫,累積大量機器學習數據,從而進行更高維度比對運算,減低誤報率。隨著人工智能技術的進一步發展,以及計算機圖像處理技術和圖像識別技術的更加成熟、完善,人工智能X光安檢設備將會在保障鐵路運用安全方面發揮越來越重要的作用。
參考文獻
[1]Robert Laganiere. OpenCV計算機視覺編程手冊[M].科學出版社,2013(07).
[2]敬淇文.基于Harris角點檢測的零件形狀識別[J].微計算機信息,2010.
[3]吳毅良.一種基于SIFT和SUSAN特征的圖像匹配方法[D].暨南大學,2011(06).
[4]張少輝,沈曉蓉.一種基于圖像特征點提取及匹配的方法[D].北京航空航天大學,2008.
[5]劉學,姚洪利.基于擴展的SURF描述符的彩色圖像配準技術[J].計算機應用研究,2011(03).
[6]劉禾.數字圖像處理及應用[M].北京:中國電力出版社,2005.
[7]陳書海,傅錄祥.實用數字圖像處理[M].北京:科學出版社,2005.
[8]段佳佳,楊迎春.圖像處理在自動焊接中的應用[J].電子測試,2012(02).
作者簡介
米仲勇(1975-),男,吉林省長春市人。現沈陽鐵路局長春站工程師。主要研究方向為鐵路運輸管理。
【摘要】計算機輔助教學的實際需要應用人工智能技術及復雜的程序,如自然語言理解、知識表示、推理方法等,一些人工智能技術的特殊應用成果,同時以及理論證明等均被應用于計算機輔助教學系統,以提高其智能性和實用性。早期絕大多數計算機輔助教學技術被應用于建立學習模塊。這種方法能控制調練策略并給出適合學生的學習內容。
【關鍵詞】人工智能計算機輔助教學教學與控制
一、人工智能的定義
人工智能也稱機器智能,它是計算機科學、控制論、神經生理學、心理學、語言學等多種學科互相滲透而發展起來的一門綜合性學科。從計算機應用系統角度來看,人工智能是研究如何制造出智能機器或智能系統,實現模擬人類智能活動的能力,以延伸人們智能的科學。人工智能是一門交叉科學,逐漸形成一門涉及心理學、認知科學、思維可循、信息科學、系統科學和生物學科等多學科的綜合性技術學科。
二、計算輔助教學體系和現狀
計算救助教學是利用多媒體計算機的功能與特點,利用計算機輔助教師完成各個教學環節,并通過與計算機之間的交互活動,激發學生的學習積極性和主動性,幫助學生更有效地學習。實用計算機輔助教學,有利于認識主體作用的發揮,它所提供的圖像、聲音、動畫等信息由利于學生知識的獲得與保持,達到提高教學教學的目的。
目前為止,所實用的絕大多數傳統以及理論證明等均被應用于計算機輔助教學系統,以提高其智能性和實用性。早期絕大多數計算機輔助教學將全部教學信息以編程方式預置于課件中,這樣的以及理論證明等均被應用于計算機輔助教學系統,以提高其智能性和實用性。因此現有的以及理論證明等均被應用于計算機輔助教學系統,以提高其智能性和實用性。早期絕大多數計算機輔助教學系統面臨許多挑戰,它主要存在以下幾個方面的問題。
1.計算機輔助教學系統的閉塞性
不具有開放性是目前以及理論證明等均被應用于計算機輔助教學系統,以提高其智能性和實用性。其弊端在于固定內容的局限性使課件的適用面狹窄,而且設定的運行路線使授課缺乏自主性;授課的針對性不強;無法利用新出現的資源在較高起點上進行二次開發。
2.智能性的欠缺
現有的計算機智能輔助課件系統不能對不同何曾度的學生進行有針對性的教育,學生的學習是被動的,不能由系統自動提供助學信息而使學生有選擇地學習。。
3.人機交互能力較弱
現有計算機智能輔助大多以光盤作為信息的載體,將材料中的內容以多媒體的形式展現出來,教學信息是按預置的教學流程機械式地提供給學者,學習者使用計算機智能輔助課件學習是完全被動的。
4.教師與學生的互動在教學中的缺乏
現有計算機智能輔助課件在學生自學以及進行操作使用時,如何學習都是學生自己的事。教師不能全完了解學習者的情況,學生在蹦到問題時不能向教師求教,師生之間互相封閉,談不上師生互動,因此課件所起的效果大打折扣。
5.課程特點沒有突出
各門課程在教學上有不同的要求,但現有課件對于這些不同要求完全不予理會。例如很多課程都要涉及到大量的曲線或曲面,對有些課程來說,將這些曲線或曲面給出了一個簡單的展示就足夠了,而有些課程這樣的展示不能達到教學目的的要求。
6.教學計劃的欠缺
在課件的開發過程中實際上離不開教學策略的設計,但課件的制作者往往并未意識到這一點。例如:現有的絕大多數課件都是單一的展播式,這樣的可見制作“精美”,但它不可逆、不能互動。實際上運用課件教學只是手段而不是目的,應該在教學設計理論的指導下講求課件的實效性,著眼點在于學生學習新知識、掌握新技術、培養各種能力有幫助,而不是表面上的制作“精美”。
綜上所述,現有的計算機智能輔助存在許多問題,隨著新技術的不斷出現,這些問題將使計算機智能輔助越來越不能適應新的要求。因此以智能計算機智能輔助為代表的心的計算機輔助教學系統將成為教育技術上需要不斷探求、努力實現的發展方向。
三、智能計算機輔助教學系統
智能計算機輔助教學系統(IntelligentComputerAidedInstruction),簡稱ICAI。教學過程是一個復雜的教與學的思維過程,它需要教師以專門知識和經驗為依據,經過吸取、講解、推理、示例、綜合等多個步驟才能較好地完成。計算機輔助教學實際上是一個由計算機系統輔助教師進行教學以及學生進行學習并得以實現的系統。在智能ICAI中,教學思想、方法、學習內容可用知識形式表示,如何解決知識的形式化表示以及知識的訪問與調用問題,是人工智能的核心技術之一,也是將ICAI引入教育技術領域中所要面臨的一個問題。知識庫是實現知識推理與專家系統的基礎,可以用知識庫作為智能ICAI的構建環境。在知識庫中,教學內容等的有關知識可以用事實與規則表示,并存儲于知識庫內,教學與學習過程既是對知識庫中知識進行推理,并最終得出所需結果的過程。ICAI系統的一般包括以下幾個模塊:
1.知識庫。知識庫是關于教學內容的模塊,解決“教什么”問題。知識庫中的教學內容有待于教學與控制模塊和學生模塊進行選取、調用。
2.學生模塊。學生模塊是用于記錄學生的學習情況,對學生學習的各個環節信息進行搜集,以便系統對學生的學習情況進行自動評估,提出具有針對性的學習建議和個別化的輔導。學生模塊描述學生對教學內容理解、掌握的程度,系統可以根據學生模塊的具體情況調整教學策略并提供適當的反饋。
3.用戶接口模塊。這是系統與用戶交流的界面。整個系統依靠用戶接口模塊把教學內容呈現給用戶、接受用戶輸入的信息、并向用戶提供反饋。
抱怨的背后正體現出中國人工智能厚積薄發,取得了一定成就,尤其是在應用層的發展達到了與美國相近的水平。如在移動支付方面,目前中國的移動支付普及率為77%,位居全球第一,在大量應用的背后,從刷臉支付到算法優化,人工智能扮演著關鍵作用。美國人免不了喝上一壺老陳醋。
事實真的如此嗎?
我們在做《中美兩國人工智能產業發展全面解讀》報告時發現:中國人工智能企業數量、人才數量都僅為美國的一半;美國布局全面,而中國無論是企業還是人才,在產業基礎層、技術層、應用層,分布不均,僅應用層略有積累。
施密特之抱怨,終究無法掩蓋中美兩國巨大的產業落差。
與其關注誰威脅誰,不如把心思放在技術創新上。這才是每一個AI企業都應該時時刻刻思考的問題,也是一個科技企業的本分。
不過,現在產業界也不夠冷靜。甚至于出現了一些讓人擔憂的跡象。回顧2017人工智能領域已經出現了三大突破,算法、政策、資金,均創里程碑,業界歡呼鼓舞,這種情形像極了1999年底網絡泡沫泛濫的情形。
展望2018,偌大一個人工智能,優秀項目不夠、頂尖人才不足、場景落地缺失,三大難題橫亙眼前,又將如何破解?
2017年的三大突破
1、算法的突破
要說在2017年把人工智能引入輿論的,就不得不提圍棋人機大戰。來自谷歌旗下的AlphaGo以3:0擊敗了世界排名第一的柯潔,隨后AlphaGo Zero又取得超過AlphaGo的實力,贏得了100場比賽的全勝,并在40天內超過了所有舊版本。
AlphaGo的前幾代版本,主要采用深度學習算法,一開始用上千盤人類棋譜進行訓練。
AlphaGo Zero則跳過了這個步驟,自我對弈學習下棋,完全從亂下開始,采用的是強化學習。該系統從一個對圍棋一無所知的神經網絡開始,將該神經網絡和一個強力搜索算法結合,自我對弈。在對弈過程中,神經網絡不斷調整、升級,預測每一步落子和最終的勝利者。
強化學習其實也是機器學習的一個分支,強化學習是一種標記延遲的監督學習。它講究在一系列的情景之下,通過多步恰當的決策來達到一個目標,是一種序列多步決策的問題。
AlphaGo Zero的成果提示,AI并非只有深度學習,強化學習也很值得研究。
在過去的三十年,深度學習運動一度被認為是學術界的一個異類,Geoff Hinton和他同事的努力,使得深度學習成為主流,應用于語音識別、圖像標簽以及其他無數在線工具的用戶體驗。
有趣的是,臨近年底,深度學習之父Hinton新論文Capsule,斷然宣稱要放棄反向傳播和深度學習理論,欲自廢三十年功力再練一套新AI“功夫”。圈里圈外頓時蒙圈。
自我顛覆或醞釀著AI的另一次飛躍。李飛飛對此大為贊賞,發推特稱:沒有工具是永恒的,即使是反向傳播和深度學習。重要的是基礎研究繼續推進。
2、政策的突破
2017頂層設計已經明確昭示產業發展方向,可以預期,2018年后各地將掀起新一輪的發展。
為搶抓人工智能發展的重大戰略機遇,構筑我國人工智能發展的先發優勢,加快建設創新型國家和世界科技強國,2017年7月,國務院印發的《新一代人工智能發展規劃》,提出三步走計劃,到2030年人工智能理論、技術與應用總體達到世界領先水平。
《規劃》旨在大力發展五大人工智能2.0技術(包括深度學習、跨界融合、人機協同、群智開放和自主操控),用以解決技術、產業、社會和國防四大領域的問題。值得一提的是,規劃中還提到了讓中小學開設人工智能和編程課程,人工智能教育從娃娃抓起,一時間風頭無兩,蓋過規劃。
繼《規劃》后,11月15日,科技部在北京召開新一代人工智能發展規劃暨重大科技項目啟動會,宣布依托百度、阿里、騰訊和科大訊飛四家公司,成立人工智能四大平臺,標志著新一代人工智能發展規劃和重大科技項目進入全面啟動實施階段。
作為創業者和企業家,2018年發展什么樣的人工智能技術和產品、怎樣發展人工智能技術和產品?翻開《規劃》,尤其是關于“培育高端高效的智能經濟”的內容,一定可以找到一些思路:“大力發展人工智能新興產業,將技術轉換成應用,實現在智能軟硬件、智能機器人、智能運載工具(車、船、飛機、火箭等)、VR/AR、智能終端和物聯網基礎器件的創新;加快推進產業智能化升級,促進傳統企業的改造,讓制造、農業、物流、金融、商務和家居等各領域都實現人工智能規模化應用;大力發展智能企業,推動企業智能升級,推廣應用智能工場;打造人工智能創新高地,鼓勵打造建設以人才、企業、生產要素為中心的產業群、產業園。”
3、AI投融資突破
一改前兩年的低調,2017年的資本,高調的聚集到屈指可數的較成規模的AI創業項目中。
7月11日,4.1億美元!商湯科技刷新AI領域單輪融資紀錄!
10月31日,4.6億美元!曠視科技獲4.6億美元C輪融資,再次刷新了融資記錄!
2017年,一系列眼花繚亂的融資事件陸續爆發。
2017年中國AI領域投融資創出歷史新高,一年內總投融資達582億元。
在投資熱門領域方面,VC對計算機視覺與圖像、自然語言處理和智能機器人的關注持續全年,其趨勢基本符合騰訊研究院8月的《中美兩國人工智能產業發展全面解讀》和《中美人工智能創投趨勢報告》的預測。
值得一提的是,國產AI芯片獨角獸出現。長期以來,中國信息產業受制于人,在產業核心芯片方面的落后不僅僅是技術、資金的匱乏,更重要的還有產業生態意識的淡薄。AI芯片投資周期長,金額大,產出小的特點,使得很多投資商及企業對它望而卻步。而此次一億美元的融資,將用于發展國產AI芯片的產品化和市場化,有助于推動產業走向自主發展的道路。
粥多僧少,泡沫也在醞釀。由于創業公司成立數量較前兩年有所回落,2017年資金明顯偏向中后期、大多數是一些較為成熟的項目,金額相當巨大。
2018年,投資人會不會對AI初創項目表示更多熱情?
許多AI初創項目,屬于“三缺一”項目,缺少獨創技術、缺少應用場景、缺少成熟度,只有一個概念,徘徊在實驗室里,難以推開市場的大門,看起來有點懸。
2018年的三大難題
1、資金很多,項目不夠用了
當前的AI產業發展面臨泡沫化的風險,主要體現在投資供應數量大而項目供給數量少,市場對創業項目寄予很高的期望,而實際的產品體驗欠佳。
泡沫即將出現。在騰訊研究院的《中美兩國人工智能產業發展全面解讀》報告中,分析了引發行業泡沫的兩個信號:
一是資金多而項目缺。
綜合過往數據和2017年前半年的情況,今年美國新增企業數量將跌到谷底,在2017之際,美國新增企業數量范圍在25-30家之間徘徊。同時,美國的累計融資量持續快速增長,最后將穩定在1380-1500億元的區間。
2018年后,中美兩國AI企業數量增長都將有所恢復,但依然平緩。在這段時期內,創投圈將會發現,找到一個新的有潛力的項目越來越難,由于新增企業數量稀少,經常只能跟投一些項目。
到2020年,美國累計AI公司數量將會超過1200家,累計融資將達到驚人的2000億人民幣。中國AI企業增勢不明朗。根據行業發展周期來計算,中國人工智能產業將會在2018年回暖,新增公司數量會上揚到30以上,預期融資累計量將會達到900-1000億元。
二是周期長而營收難。
通俗的說,人工智能期望值被大大高估了。引領本輪AI熱潮的深度學習,起源于上世紀八九十年代的神經網絡研究。在很多情況下,前沿研究是由對已有方法的微小改動和改進組成,而這些方法在幾十年前就已經被設計出來了。
2006年,深度學習算法獲得了突破后,引起市場熱炒,但相關的AI技術和產品的成熟度仍然有限,甚至被譏笑為“人工智障”。許多項目和技術,要想獲得消費者歡迎,還需要相當長的時間。
從投融資趨勢來看,涌入人工智能領域的資金依然還會增加。
一個依據是,據不完全統計,2017年中國人工智能領域的投融資事件約353起,比2016年稍有回落。但投資金額激增,總融資金額近600億人民幣,在政府的鼓勵和行業并購中,2018年中國AI的投資將會持續大幅增加。
另一個依據是,行業并購開始加劇。根據CB Insights提供的數據顯示,自2011年以來,已有近140家人工智能初創公司被收購,而2017年的第一季度,海外就有34家人工智能初創公司被收購,為去年同期的兩倍。2018年,仍將延續這一趨勢。在資金增長的同時,中國AI企業數量卻不能同幅增長。根據行業發展周期來計算,中國人工智能產業將會在2018年呈現回暖,預期融資累計量將會達到900-1000億人民幣,而新增公司數量僅僅上揚到30家左右。
資金多而項目缺,周期長而營收難,項目卻一天比一天更加昂貴,這種情形與1999年的第一次互聯網泡沫何其相似。
2、事情很多,人不夠用了
算法大神YoshuaBengio曾表示:“深度學習現在炙手可熱,目前的困境是缺乏專家,一個博士生大概需要五年的時間培養,但是五年前還沒有博士生開始從事深度學習,這意味著現在該領域的專家特別少,可以說彌足珍貴、極度稀缺。”這是三年前AI面臨的困境,至今依然未得到改善,甚至變得更加嚴峻。
人工智能競爭以頂級人才為根本。據說世界上深度學習領域的頂尖人才不超過50人,Andrew Ng表示深度學習領域人才匱乏的主要原因首先是數據,對于解決某些領域的問題,獲取數據并非易事;其次是計算基礎架構工具,包括計算機硬件和軟件;最后是這個領域的工程師培養時間非常長。所以科技巨頭們等紛紛通過收購初創公司來招攬人才。
作為國家未來的發展方向,AI技術對于經濟發展、產業轉型和科技進步起著至關重要的作用。而AI技術的研發,落地與推廣離不開各領域頂級人才的通力協作。在推動AI產業從興起進入快速發展的歷程中,AI頂級人才的領軍作用尤為重要,他們是推動人工智能發展的關鍵因素。
然而,中國人工智能領域人才發展極為欠缺。
據騰訊研究院的《2017全球人工智能人才白皮書》顯示,目前我國約有20所大學的研究實驗室專注于人工智能,高校教師以及在讀碩博生約7000人;產業界現存人員人數約為39000人。遠不能滿足我國市場百萬級的人才需求量。
從產業發展來看,我國人工智能領域人才分布嚴重失衡。
人工智能產業由基礎層(芯片/處理器、傳感器等),技術層(自然語言處理,計算機視覺與圖像,機器學習/深度學習,智能機器人等)和應用層(語音識別,人臉識別)等組成,目前我國在產業層次人才上面臨兩個問題如下:
問題一,產業分布不均。中國AI產業的主要從業人員集中在應用層,基礎層和技術層人才儲備薄弱,尤其是處理器/芯片和AI技術平臺上,嚴重削弱中國在國際上競爭力。
問題二,供求嚴重失衡,人才缺口很難在短期內得到有效填補。過去三年中,我國期望在AI領域工作的求職者正以每年翻倍的速度迅猛增長,特別是偏基礎層面的AI職位,如算法工程師,供應增幅達到150%以上。盡管增長如此高速,仍然很難滿足市場需求。但是,由于合格AI人才培養所需時間和成本遠高于一般IT人才,人才缺口很難在短期內得到有效填補。
人才不足,是制約中國AI產業發展的關鍵因素。
近幾年來,Google不斷的收購AI領域的公司最主要的目的是“搶購”一批世界上最一流的專家,在一個迅速成長的人工智能領域里面,這些專家無一不是佼佼者。其他科技巨頭也相機而動。
可以推想,人才流動,還將加劇。人才引進,還需持續。2018年,無法緩解人才饑渴癥。
3、場景很多,路不好走了
如果梳理一下2017全年的AI產業大事件,人工智能技術與行業結合,九大熱門領域遍地開花。
其中,醫療、金融、無人駕駛這三大熱點中的懸疑,更是大大的吊足了公眾的胃口。
懸疑一,AI醫療的變革的信號在哪里?
作為民生領域,醫療年年改,卻次次令人無奈。風險投資也對AI+醫療有持續不斷的支持。2017年,每個月都有VC流入AI+醫療領域,國內所有醫療人工智能公司累計融資額已超過180億人民幣。
科技企業智能醫療的布局與應用已有雛形,IBM Waston已應用于臨床診斷和治療,在2016年就進入中國在多家醫院推廣;阿里健康重點打造醫學影像智能診斷平臺;騰訊在17年8月推出騰訊覓影,可輔助醫生對食管癌進行篩查。圖瑪深維11月獲投2億元,正在把深度學習引入到計算機輔助診斷系統中,晶泰科技(XtalPi)近期也融資1500萬美元,用于新一代的智能藥物研發技術,以解決藥物臨床前研究中的效率與成功率問題。
遺憾的是,盡管政府亮了綠燈,企業投了人力財力,但人工智能卻并沒有在醫療領域出現爆發。原因何在?在于人工智能需要大量共享數據,而醫院和患者的數據如同孤島。如何打破各方壁壘,保障健康的同時又保障數據安全性?這將是推動智能醫療快速發展的一個重要信號。
懸疑二,AI如何深層次的撬動金融?
與智能醫療面臨相同數據問題的還有金融領域,大量的可信度較高的數據握在各大銀行手中,AI怎么能夠撬出來這些數據以推動金融科技的創新,是創業者們絞盡腦汁思考的課題。
當前,人臉識別、指紋識別技術作為驗證客戶身份、遠程開戶、刷臉支付,解決金融安全隱患的方案,已經發展成熟正在逐步推廣。
如何利用知識圖譜挖掘潛在客戶、進一步深挖客戶潛在需求的技術也已較為成熟,而數據源的問題亟待解決。
美國的科技公司FutureAdvisor最早研制出“機器人理財顧問”。隨后,此類機器人理財顧問迅速風靡全球。
2017年智能投顧更是火燒火燎,被視為是下一個風口。但是,機器人炒股,結果賠了。
懸疑三,智能汽車究竟何時上市?
無人駕駛汽車被稱為“四輪機器人”,但其發展何時會像智能手機一般,人手一臺,徹底顛覆傳統手機進而推動整個產業變革?這答案仍然是個懸疑。
2017年,汽車行業內智能造車勢力動作不斷,其中一部分已陸續交出答卷,讓產品接受市場的檢驗,而一部分仍在溫室中培養,等待結果。之所以稱之為“溫室”,是因為各行各界都對其予以厚望,尤其是在投融資上,雖然投資事件數不多,但金額達234億人民幣。
百度宣布開放阿波羅平臺。阿里巴巴與上汽集團等傳統車企展開合作。騰訊于年初成功入股特斯拉成為第五大股東,領投蔚來汽車首款純電動產品,已正式上市。
時間正在跟我們賽跑。2017年,無人駕駛車輛走上北京五環被交警調查,12月20日,一支百度Apollo無人車車隊,在雄安新區測試開跑。2018年初,北京順義區無人駕駛試運營基地正式啟動,成為北京出臺國內首部自動駕駛新規以來,全市首個開展無人駕駛試運營的區域。2018年,誰會上路?行業和消費者都拭目以待。
回顧2000年互聯網泡沫的幻滅,很多人依然覺得不可思議。那時候的產業發展日新月異,軟件應用、網絡服務ISP,網絡內容ICP爆發,常有一日不見如隔三秋的感嘆。
2000年4月,納斯達克指數一路狂飆突進到歷史頂點,5400多點。但不幸泡沫破裂,資本市場崩盤。納斯達克指數迅速滑落。中間經歷了9.11恐怖襲擊事件,還有安然事件。寒冬持續了3年時間,才慢慢走出低谷。
如今的AI產業正蓬勃發展,與互聯網初期階段何其相似。
產業帶著耀眼的光環,肩負國家戰略的重任,高度依賴資本市場渠道,輿論高度爆炒,從業者無不都是三高社會精英。